198 research outputs found

    Time evolution of ground motion-dependent depolarisation at linear colliders

    Full text link
    Future linear colliders plan to collide polarised beams and the planned physics reach requires knowledge of the state of polarisation as precisely as possible. The polarised beams can undergo depolarisation due to various mechanisms. In order to quantify the uncertainty due to depolarisation, spin tracking simulations in the International Linear Collider (ILC) Beam Delivery System (BDS) and at the Interaction Point (IP) have been performed. Spin tracking in the BDS was achieved using the BMAD subroutine library, and the CAIN program was used to do spin tracking through the beam-beam collision. Assuming initially aligned beamline elements in the BDS, a ground motion model was applied to obtain realistic random misalignments over various time scales. Depolarisation at the level of 0.1% occurs within a day of ground motion at a noisy site. Depolarisation at the IP also exceeds 0.1% for the nominal parameter sets for both the ILC and for the Compact Linear Collider (CLIC). Theoretical work is underway to include radiative corrections in the depolarisation processes and simulation of the depolarisation through the entire collider is envisaged.Comment: 8 pages, 4 figures, PST09 proceedings; Proceedings of the 13th International Workshop on Polarised Sources, Targets and Polarimetry 2009, World Scientific 201

    Measurement of the charm and beauty structure functions using the H1 vertex detector at HERA

    Get PDF
    Inclusive charm and beauty cross sections are measured in e − p and e + p neutral current collisions at HERA in the kinematic region of photon virtuality 5≤Q 2≤2000 GeV2 and Bjorken scaling variable 0.0002≤x≤0.05. The data were collected with the H1 detector in the years 2006 and 2007 corresponding to an integrated luminosity of 189 pb−1. The numbers of charm and beauty events are determined using variables reconstructed by the H1 vertex detector including the impact parameter of tracks to the primary vertex and the position of the secondary vertex. The measurements are combined with previous data and compared to QCD predictions

    Study of Charm Fragmentation into D^{*\pm} Mesons in Deep-Inelastic Scattering at HERA

    Get PDF
    The process of charm quark fragmentation is studied using D±D^{*\pm} meson production in deep-inelastic scattering as measured by the H1 detector at HERA. Two different regions of phase space are investigated defined by the presence or absence of a jet containing the D±D^{*\pm} meson in the event. The parameters of fragmentation functions are extracted for QCD models based on leading order matrix elements and DGLAP or CCFM evolution of partons together with string fragmentation and particle decays. Additionally, they are determined for a next-to-leading order QCD calculation in the fixed flavour number scheme using the independent fragmentation of charm quarks to D±D^{*\pm} mesons.Comment: 33 pages, submitted to EPJ

    Jet production in ep collisions at high Q(2) and determination of alpha(s)

    Get PDF
    The production of jets is studied in deep-inelastic e(+/-) p scattering at large negative four momentum transfer squared 150 LT Q(2) LT 15000 GeV2 using HERA data taken in 1999-2007, corresponding to an integrated luminosity of 395 pb(-1). Inclusive jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q(2), jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurement

    In Search of New Phenomena Using Polarization

    No full text
    corecore